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DUCTED RADIATORS* .

By W. Linke

. SWMARY ,,.

The present Yeport deals with the relation %etween
the open areas, the drag,. and the air, flow as observed on
freely exyosed, ducted radiators - the air conductivity
being modified from zero to one unit. The most ad~anta~...
J;eous forms of ducts are derived therefrom.

,

In conjunction with theoretical results, the individ-
ual components of tb.e drp,g of ducted radiators are dis-
cussed ,and ~;eneral rules established for low-loss ducts.
The ‘influence of the wall thickness of the ducts, of the
leil:;th ratio cf the exit, a-ridthe effects o.f sonic veloc-
ity on diffusers are dealt with ‘W special measurements,

INTRODUCTION

The -enclosure of radiator elements on an airplane
usually tio-risistsin, placin~ these elements in a duct with
entrance ai~d exit area smaller than the frontal area of
the block. On such radiators fitted’~~ith diffuser and
exit - termed, ll~ucted radiatorll -’a redUCtiOnf’or short , .
in the’ dr~q per unit of heat dissipation, is secured “in
comparison to the ‘blocks freely exposed to the air stream
“or, in Ot’her wor”cls, a reduction in the ratio

.. .

. Coolinq draw W—————__—_——_Q___
Heat transfer Q,,

&

is.ackieved. ‘The usual explanation is as follciws: Tlie
“ drz<< W cotisi’’stsIarqily of flov; resi-stance, e.pproxinate-
ly’proportional to ‘the Sqti+:reof the” flow velocity V*

..
————______._______.__> ——_———————-——————__.—-—————
*“Experimentelle “Untersuchunqcn an frcifahrenden D~sen-

k&lern.ll ‘J.nhrbuch 1938 der Deutschen Luftfr.hrt-
forschucq, pp. II 281-292.

.— -.
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The heat transfer Q, however, varies approximately as the
first power of the velocity. Therefore, the ,ratio W/Q
decreases with v and ,it,appenrs advantageous to cool at

lowest ~.ossi.ble fltiw velocities; this is accomplished W
the diffuser nnd exit which permit throttling of the flow
as desired %y redu,c~nq’ the percen.t,age of open area.

But the throttling of the flotv is limited for several
reasons : As the heat renoval abates t~ith the flow, the
frontal area - requ.irod $or ror.oving a certain amount of
heat - “oecomes continuously qreatcr and with it also the
weight and volumo of the “systen 3Y red”~ction in flo~~
Furthermore , %y this procedure, the area necessary for
ductinq increases; i.e. , additional dra% occurs which,
together with the in~reaset’ weight, miq~t nullify the

ac’hieved qains, altogether.

It is of interest to know the amount %;T which the
ratio of entrance or exit area to frontal area of radiator,
can be safely reduced and how the diffuser and the exit
can ‘De desi%ne”d so as to keen the additional drag to a
minimum. The present report-is intended as a contribution
-to the experimental clarification of these as~ects. The
effect of the open areas on the draq and air flow was
measured on an installed coolinq system and explored with
screens t’nrou<hout the entire range of air conductivity.
This affordeil first, data concerning suitable openinq ra-
tios with their entailed draq and coolin% performances;
second, a qeneral review over t’he combined action of the
air conductivit:~ of installed s??stems, air flow, openin?
ratios, and drag, ~Vhich’ includes not only radiator elements
%ut also air-cooled enqines ]Tith very little conductivity.

With the use of unheated screens, the effect of ,~ir
heatin? on the drag and the flow was at first disregarded.
A separate study, ~rheroin. t!lose Offocts ,aro explored ,0~. an
electrically heated” radic.tor %lock, will not %e ‘discussed
here . ?!ercly ‘results, so far as necessc,iy, for considera-
tion of air heati-nq on t-he screen measurements, are re-
counted.

Las,tly; it..is pointed out,. all experiment’s were con-.
ducted at low air speeds; hence, effects which at hi%h ‘flY-
inq speeds entail” the apmroach of sonic velocity at differ-
enb parts of radiator du-cts,,were disregarded. The re-
strictions imposed here%,v are .discusse?. separately.

. ._ ,.,, !
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The measurements were conducted

No. ‘3’70 3

on freely exposed
ducted radiators, Canalfor t’he follominq reasons: First ,
“oecause tb.is simpler crise was to be treated; second, be-
cause mer.surep.ents on complete airyla.ne bodies b.v the di-
mensions of the Aachen wind tunnel (jet dia.neter, 1.85 n)
had led to very small frontal areas, and kence to a’n~t-
very-accurate determination ot the effect of the open~n?
r<atios. L.nstly, with. the choice of freely exposed ra.din-
tor, the frontal area of the ra3iator COuld be Bade so
lnrge that oriqi~al radiator bloc:~s of 200 “oy 300 mn2
frontal area, prev~ously ’explored for heat renovnl and’
pressure drop in n. close? c~t<annel~ could ‘De installed in
the ciucts. The ra?.iator front<al ,~.re.aitself$ 200 by 300

2r?. , w.ts rectnn%ulnr. The fiucts wit’% ?.ifferent open areas
w~re o“otnini>d %y different assemblies of one “o,ase duct

sull&i$isi%le at sections a (fiq. 1). 317 these nea.ns,
the. entrance areas could be v~.ricd from O percent (duct
closed), 13 percent, 36 percent, 66 percent, to 100 per-
ce~.t; and the exit areas fron O pcrceilt, 15 ;gerccnt, 34
percent , 65 percor.t ; to 100 percent of the radiator fron-
tal area. !T’heentrance areas are ~,ereir.after denoted h.v
v03 “v V36, Ctc.,13 * aiid t-he exit areas by Ho, H 15? H34’
etc. The duct had a fiouhl& wall (plywood inside and out-
side) , tkus .affbrdin% a smooth wall despite tlhe combina-
tion a-ad rounding off OS the corners of the rectangular
section. Breakaway 0? :>OW ~ild turbulence were to be
avoided. 3Y a fairly yreat lenqth and the use of nose and
tail fairi~qs (b in fig. I.)e These measures entailed, of
course, a fairly Leavy wall thickm.ess of the duct’, tke ef-
fects of which are discussed later one

The use of screens afforded a ready mear.s of ascer-
%aining, the ran;e of variation of the conductivity from O
to 1. By conductivity iS meant the value :

where

Tai

v rate of flow

1.—— —-..

f

—————
1 +. -&d?–

J py.2——
2

“ ‘(l)

. Ap pressure drop og screen or radiator %lock
at speed v

i
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The use Of this conductivity conc~pt is ati’nmtaqeous to
the extent that 7~i c~.n “oe dealt l~ith as constant for

any system provided the rate of flow is not too low, which
would not be the case to the s,ame extent if - say, the

dra%
An

coefficient cm = ——~- were used for the aerodynamic
~ ~&
2

characterization of a conductive lody. The conductivity
~ai ~.a?~assume v(alues %etween Cland 1. And, in the case

that the pressure of undistur~ed flow is reached directly
‘Dehind the freely exposed radiator, while entailing no
ener:y losses ‘oefore p.nd behind ‘the radiator due to break-
down of flow or friction, it also has the significance of
the ratio of flow velocity v to flyin% speed To; hence,
~ai = v/v. {refererice 1).

Four different screens, shovn with conductivity plot-
ted+ aqainst rate CJf flow in fi~ure 2, were used. l?or
higher rates of flow, where the square resistance law ap-
plies to the separate elements (wires) of the sc~eens, the
values n“ = 0.183; 0.358; 0.466; 0.270 were assumed.

These fiq~~es are applied throughout to identify the
screens, even when the particular rate of flow was small
and ‘flai, strictl:~ speakinq, was smaller. ot~e~ than ~~e
four conductivities, there are the contLucti~ities ~ai =

O (%oard inserted) and Ilai = 1 (free passa~e). The nor--

real conductivity of radiators ran=;es “oetween 0.3 and 0.5;
in radial en%ines, ‘oetveen 0.05 and 0.15.

Lastly, a cold radiator Ilock, 180 mm ?.eep, ras in-
serted, t’ae conductivity of rhich. is also %iven in f’i%ure
2. It closely a:<zees ~ith that of t’~e screen ~ai =
0.466, ant!<so afforde~. a check on the equality of radia-
tor and screen in regard to resistance and flow.

The dra~; and flow mea,sur’ements were conducted at all
possible com’oi-natj.ons0? openin~ ratio and conductivity.
The resistance was recorded hy ‘oo.lance as usual, at V. =
15, 30, and 40 m/s air speed. The ~.e.a.nflow velocity v
w.%s o’otaine?. “KIy~;raphic.11 inte~~ration of 35 Separate meas-
urements sc~.ttercd over the section of the screen with the
Prandtl pitot tu-oe (fiq. 1) at V. = 30 m/s air speed.

Tor observation of the previously cited effect of’
radiator henting$ a modern \7ater radintor (tubes with

L .——.....—-.-. ..—
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4....* streamlined section and indirect cooling surftaces) was se%.,

l“’

J.J iri”’”~”he”duct ‘and heat”ed’-”electricallY, each tube .c.ontainin%
=-j a heating coil.
1i$,

t:] “
111. RESULTS OF T~STS AND DIS.CVSSION

/f}+! a) Flow and Resistance
[’d,.,
y .

I-*-. Table I contains the recorded mean flow velocities
~’ v (nondimensional) in relation to ~ai, = v/v. ; further,

the recorded drag IV as d.raq coefficietit

%Vo = ‘———
1?:W.f.

(1?= radiator frontal area = 0.0615 m2; to differentiate
from the maximum section area I’! = 0.0983 m2). Fi~~re~

3 and 4 show aev and c plotted a$;ainst ~ai. Accord-

ing to fi%ure 3, ~ nae = ~~~ at ~zooHloo: i-em, for this

duct , merely representing a frame around the radiator, the
preyiousl:’ cited siv.ple co-nditions prevail. The’ ‘%o val-

ues manifest a certain systematic aspect , at w’hich the for-
r.a.tion of a maxirflun at averaqe Tai v,?.luesand not too

snail openin% ratios, is noteworthy and which is interrupt-
ed only ‘Dy VLOO and especially 3:? stiall llai throuqh

abrupt resistance increases. Observations with streamers
proved this to be due to the breakdown of the flow on the
front edge of’ the duct. In re%ard to this phenomenon,
figure 5, m~.ich qiyes t~le Cw values for seve~a.1 ducts

o

.-.

at’ different speeds Vo, discloses its appearance, espe-

cially at snail Re:?nolds nun-oers. Apart i’ron t’ae bre&k-
down phenonena, onl:~ n.inor scale effects are noticeable,
hence tlae Cw

.0 values for ‘o = 40 zl/s, subst.antltally

retain their ~hxi.ait~r even at large Reynolds nunbers.

Anticipatiaq , accordin% to” the for’eqoin%, adherence
of flow at larger Reynolds nun”hers tb& eri’jloyedin thci
test znd with, a Tiew of c~arifyin~ the connections between
itraq, flow, and conductivity, the dra? coefficients re-
corded b~r hreo.kdo~n of f~o~7 ~~fereextrapolated to those for
adherinq flow by ne~.-asof the ~raphs of fi~ure 6.
representation ‘%0 is plot~ed for constant flai
s.ysten of coordinates, qi-~inq in one direction the

In this
over a

opening

L



.:.
ra.tio”s,of” the i.ir ~~’t’ia’~’ce,an”~‘at r“~~tit”‘;”ag~l?esto th6”;zii~.

.

exit . In”s~ead of the”””i~re<ular, h,’i+d-ti’raq““c~oefficients -
at ‘oreakdo\7n of flow, the systems in this represetitatgdn
can be easily “o,rought.i~’to conformity yitb adhering flow.
Fisure 6 further contai’n”s the %Vo’ ‘values”referred to

naxinun cross-sectional area. 1’1 of fusela~e, not to
fro’mtal area 1? of the radiator. It is nom readily seen
-0:.7?&o\7nuch the draq of a ducted radiator is qreater than
the streamline body VOHO,. to which e?ery fern can be re-

stored. The coefficient of the “~ody’”VOHO anounts to
!

%?o = 0.066. The extrapolated values are shown dotted

and bracketed in fi?ure 4..

A raci.i.ator ‘olock of the’ sane conductivity as the
screen Tai = 0.466 vas, as already stated, built $ti the
av-ct. It consisted of air tu’bes of rectan~ular 3 x 8.5
Zlrlase”ction, and 180 nn dqpth. In table II the “Cwo as d

~ ..ae -ralues of screen and. radiator are conpare”d for sev-

eral ducts. They show, on the whole, %ood a-qree~.ent be-
tween radiator ‘and screen, except for ducts .5* 7100

where the radia”tor drag is a little lower. ‘ This might be
due to a directional effect Of the radiator ‘tubes, althou%h
the test,s do not exactly substantiate this conclusion.

.

In furtherance of the discussion, we show % o plot--,,
ted aqaiast .,~ae in fi~;ure ‘7 for all the o-oserved arranqe- .
ments %7? COilstailt .~af . The test, points are connected ‘Dy
lines of constant entrance and exit area, and so afford a
?raph in which % o and ‘Oae can he interpolated for any

not-recorded opening ra”tios. The openin% ratios, for which
the ,dra.g‘oecomes mininum, for certs,in flow ~ae, are lo-
cated on tqe lover boundary curve cIf the zraphs. Duct s
for which c~o/-Oae ‘reaches a minimum, correspond to the

contact points’ of the tangents drawn froti’the zero point
to the lower boundary curve. Whereas .031this lover curve
the exit areas pass tkrouqh all ve.lues, the entragce areas
are contin~e,nt upon the condition. that they are ~reater at
small ‘n~.~ than the exit areas and ~;reater than the con-
ductivity ~ai of the Wilt-in scrccn ‘oy hiqber ~ae

,..
values, “out otheruisc” of any maqnitude. IQ othsr words,
the conditions*

,\.,.,

-—_________ ________ ..————__— J.———— -—.—-
*

.. ,.: , .. \
See footnote, p. 7 ,. ,, ,!

., ..,:,
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V>H ,,
.,,. ...= .... --— ......,,.. . .

and ,. V > ~~i

hold true. P.eqard3n~ thqs; conditions, the follonin~ ‘
should ‘oe “oorne in mind: In exposing a
flow, +;he

diffuser to free
flow l~ill a117.ayslredcl down dn the inner wall of

the diffuser - as indicated in figure 8 - if certfi.indif-
fuser ar.glos are exceeded. To rw.ke the flow adhere in the
diffuser 7 which wot~ld require a pressure rise in it

(2)

(fig. 8)3 an exit” or a conductive body is fitted “oehind
the dtffuser, with at least the same pressure rise ~1 -
P. “Defore it , and :hence t~le same flow deceleration in

free flow. This is the case for exits *rith opening ratio
equal to or smaller than that of the di~fus~i- and l)y ad-
herence of ociside flow to the exit. it ~Ol?LS true for
condLucti~~@ bodies rith conductivity ?ai equal to or

saaller than the ratio ~o/F3 of tke diffuser, ~.nd when

the pressure p. of undisturbed flow is reack~ed ‘eehind
the body as, say, on the duct v~oo II~~o* The Ap 0:
such bodies follows (cf. equation (1)):

(3)

The conditi,oas V>H FLnd T > Tjai for the lower bou~d-

ary curve th.erefor~ inp].y th~t..on it the flow iil the dif-
fuser adheres, whereas at all other poi~lts above it, %reak-
down Of flo\7 has taker- plr.ce.

This point is of special significance for the control
0$ duc~ed radiators. T’heoreticaliy, the control rust al-
Wa,ys be Such 0,$ to S,ntisfy “the foregoin% conditions,
in order to avoid needless resistance and flow decreases

/
——________ _______.__-.——————.———.————

*(Frorl p. 5) “ ,
Se’.?cral test $oi~ts for Q~m*Hloo at snail ~ae, which

are not located o-n tti-elolTer ‘ooundary curve , do not satis-
fy those conditions, However, since uncertain extrapolat-
ed test poin-ts are involv-ed (breakiiovn outside) , t’his ‘oe-
haTior is disroga.rded here.

— ..
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through breakdown in the diffuser. To illustrate:’”” Using .
for a radiator wit% ~i = 0.4,v the opening ratios

TGOH23 as hiqh-speed settin%, the ra~sinq of the flow is

prefera”oly accomplished lIy openin? the exit areas, and to
any desired percentage without fear of lreakiiown of flow
in the diffuser, %ecause T is a~ways qreater than ~ai .

But with v~*ii~3 as. settinq for hi%h speed, the entrance

area would also have to be enlqrqed at least to V4 ; if

on openinq of the exit areas, H30 is reached. So, if

the control is to %e confined to the exit area and the lo-
cation on the lower loundary curve is to be retained, the
entrance area must” not ‘oe less than the conductivity.

From the dra? of the eddy-free ducts on the ~@~er
boundary curve, one minimum drag “can be seqre?ated that
would exist, !Then t’ae o-~served flow nae , is due only to

momer.tum losses in the’ coolin% “olock itself, ar.d otherwise
no. other drag’ of any kind occurs. This minimum dra’? is
computed a.ccordin% to formulas ori:ihall:r emP?-oYet ‘W R-
S* Capon (reference 2) from the recorded. :1017 ‘l’’!ae,when
the conducti~~ity ~ai is i~ltroduced nr.d assumed to be

known. I,f there are no losses upstream or downstream fr~n
the cooltnq block, and the pressures a~ld spee~.s .nre such
as indicated in fizure 9, the mnmentum equation defines
the mininurn draq . T?*, when placing a. control surface ~.t

%reat distance arou:zd the ducted radiator, so that the
pressure integral %ecomes equal to zero:

(4)

In the reqion upstream and downstream from the radiator
%lock , Bernoulli:s equation can be applied, i.e. :

Equations (4) and (5) toqether with

(5)

..
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W*
give as coefficient cm * = ————— of the min. ixmm dr,ag:
........ ...— _. . .,. 0 f.7 .~..T.

20,

* /-:-;--r--R----
%TO 1)).2&e. @-Jl

(
—-— .

.ae
‘Ta”e2 z

(6)

This minimun W*
drag (= w~

.cr.nbe divided into a cooling-block
= (l?~”--pa) F’) ~.i~da ,duc,tdraq WV. The cor.re-

spondin% coefficiem-ts tire Z!.?ldCw~K %ov”
,,

~, it affords for

k

.&p F~;02F
‘%OK

f’1
cwo~ = (——.- . 1) ‘& e2

?lai2
(7)

The duct draq coe?ficicnt c’tio~= *
%?O - %OK is, as will

be ~ho~~, always r.e<ative; -z. e., suction forces appear on
the riu,c%o ,,

For the specific case, Qae = ~ai, which for duct

-?H100 100 ‘occurs usually, an other ducts only at snail

Tai (~i$$. 3) (Townen.d rin%s included), equations (6) and
,,.

(7) reduce t’o

*
‘% ~ (1 - Vai,)=“2~a; (6a)

and \ .
CWOK = T1 - ai2 (7a)

‘hence the consistently negative +alue”

%70v =“- (1-”7&i)2 (8)

. .
for the duct draq coefficie~.b.
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The coefficients *
%vo and %. K ‘ plotted in figure

‘7, disclose the consistently negative duct drag very plain-
1s’. In no case do the test points of the lower boundary
curve reach the minimum drag coefficients. The difference
~etween the two curves represents lar~ely the cumulative
drag due to friction on the inside and outside wall of the
duct . it is, upon closer examination - at ‘llai= 1,

directly apparent - fairly ccastant for different ducts,
flows, and conductivities. In the graphical representa-
tion of fi~ure 10, the clifferent dras proportions are out-
lined in detail.

The propulsive $orces created on the ducts were di-
rectly recorded on designs T~ooHloo an~k V66HI00 and the

pressure distributions integrated. To this end, pressure
orifices were fitted on v~~ II~oo at two sections of the

diffuser, conformable to”figure 11, and on a section of
the rear edqe (b i.a ?Iq. 1), on VIOOHIOO at Only Oile

section. each of the front and the rear edqe of the duct.
YiqUres 12 and 13 give the i-esult~ for ‘~arious ~ai val -

ues. As expected, the Cutside of the diffusers manifest
severe low pressures which, on the VIOOHIOO rise to four

times the dynamic pressure ~o ‘oy decreasing ~ai , and

on the V66H1OO to Z*6 times. The rmltiples (cp) are

shown separately in ta%le 111 for the important practical
conductivities (~ai = O and 0.183 correspond to radial
enq.in.es; Tai = 0.358 and 0.466 to coolinq systems). The

flyia< speeds 70 at wh.ic’%,according to 3ernoulli, the

sonic velocity “correspondin~ to the nomentary cp 7alue
is reached on the diffuser, represer-t speed linits at
which t“ge present data are best a~plica%le. They nanifest
the extent to whit’h son-it veloci.t<y can occur at t’he pres-
ent flyin.~ speeds and how, “037further speed increases, it
is necessary to chanqe from diffuser forms producing con-
siderable flow deflection, and hence high increase of
speeds, to slender (small diameter) forms..

The coefficients Cwov otitained from the pressure

distri%utioils by planimetrT are shown in fi%ures 14 and
15, su’otracted from the related CWOK values. ‘I’hisdif--

ference CWOK - cWoV~ which represents the total drag

when the frictional drag is discounted” is, on t’he w-hole,
in close a~reement ;Vith the minimum drag coefficients

.,

.—
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‘% ~ *.””(broken curve). The theoretically expectedpropul-
.. .... ,.-. “* -“”’”Sz.on cwo~ - Cwo 1s tll-eref’ore”full~~ deve.l-oped on’ the

duct . That this hap”p~ns 31;
.

71”005100 also , where at

small ~ai outside %reakdomn of i’iow takes place, can be

explained %Y the fact that here only pressure distribu-
%io,ns were recorded on oae section - i.e., the wide side
of the duct, wl.ere the 10U pressures are higher than on
the narrow side, and thei~ used to defir.e %OT* The pro-

—.
pulsi~e forces are therefore a little too great. The high
position of the point for V66H100 and ~ai = 0.720 is
attributable .to breakdo~?n of flov inside of the diffuser
(V< Tai?, as manifested on the pressure distribution-
curve .

,, .’

“~) Additional Measurements on Thin-Walled.
~adiato”rs in.Ducts

Ilt?tneenthe min”iinum’draq *
~“n?. the eddy-freeCwo

dra$ “C,wo of the lower boundary curve, there existed a

fairly ‘high, approxi’ma.tely constar.t difference , rhich is
chiefly due to frictio:m drag. This is, in part, attribut+
a-ole to the cop.payati~ely y~er.t ~7a~l <~lick-ne~s Of the

ducts and it appe~red desirable to ascertain the extent to
whi ch this drag reduces if the ~valls are thinner. For
this purpose, several other. t.ucts of ratio F = 0.90 as

F
X7

a%.ainst t~he previous ~ = ~.62 rere explored (fig. 16).

The entrance area Has ass~med coilstant at 66 perce.gt of
the frontal. surfr.ce,. the exit ,areas ~.t O, 12, ,66, 85, and
100 perceat (itieiltification Ve6H12d).. The rat.iator JTalls,

i
%ein,q com.s.ider.a”~lythinner than those studied previously

~i,,

I

“(.fiq.’~~)”, ;-could .e measured in the small.&ind tur.nel of
;l): the Institute (T. = .40 rl~s). The frontal surface was
}} circular. T!’heconductivities ofpf , the screens amounted to

~ai =“0.2~5, ().32, 0.435, and 0.685.,!. This time the flo,.7
yi
~“

Ras o“otained. by recordir.o; t~~e pressure I.rop at t~;o ori-
fices of the cylindrical centerpiece of the ducts..+

!

The
j test data are appended in ta-ole IV, while in fiqure 1’7,
~;}
,7 the ‘%.

.*

I

and Cwo values are shown plotted against ~ae.

$iince, on the whole, V > ~ai aild V>H, the % o
curves correspond to the lower boundp.ry curves in figure
‘7= ~% “is seen that the addition~.1 dra~ is approximately

..——



equal to the. previously .<obtained.values onl>r when ‘Qae =.....
0, that is, it ,reac.hes considerably lo~rer values,Ho; ,,
with increasin% ,exit area. Still lower %o. cur~es should

he difficult to obtain. I’or the rest, the findings - aside
from the smaller differences c *4

Wo - %0 are in close

agreefient’ with the previous dat.n. The-different constant,
the different .sliap’eof,fronta.1 surface, and the use of ~
different wind tuhn,el, sp,e~k for the ~eneral validity of
the other measurene”nts.

Other than this wall-thickness effect, the chr.nge of
the additional drag exceedi.n~ the mininun drag by chanses
in the exit length Z, nas also deene.d of enough impor-
tance to study it ofi three ducts r~ith equal open areas
~GeEze6, “out different ratio of exit length t to radi-

ator frontal. area diameter. D [~.= 2.03, 1.08, “and 0.70,
kD

fi%. 161. The results are tabulated in table V, the Cwo

and “*
%o values plotted a%ainst Vai in fiqure 18. The

lonqest exit %ives the least difference in cm *
o

- Cwo

(fiq. 18). The differences, however, are so small that,
under certain conditions the shorter exits are preferahl’e
for reasons of space and wei%ht.

In figure 19 is shown, in conclusion, the ~e,ha~ior
of characteristic installation ferns, ~vith particular ref-
erence to xin.i.nun dra%. Plotted aqai’nst the conductivity
are shown:

.

A. Tke draq coefficients of completely bare screens,
according to 3’lachs%artts tests (reference 3)* In addi-
tion, the ninimun draq’ coefficient WO**, ~bich affords
..
a Tlachs-oart theory for this particular case ITith conduc-
tivity Vai. It <i-res

** 1“= —.—- ———-..———. —
%. —~ for !’lai> 0-445.

(
1 1

)(
“’~+ p

-—- -
1

-——--—.-

(
n 2 ,4 _2-3ai

\
)

*~”\

?lai )

The a%reenent with the theoretical values for Tai a 0.7”
states that in this ~ai ranqe, no,additional drag,.occurs,
tvhich”in this instance could consist only of separation

.,... ...... .. ..- —., ,,—,— —, ,. , ,, , ■ ✌✌ ✌✌✌ ✌✌
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g.rag~. On exceedin~ this ran~e, the flow takes on thea>
character of p~ats”””flo~ (~ai=-v 0-)” With extended vortex
zone.

!
[,,. B. The draq coefficients’ of’screens in’ a thin-walledr’,’ tube. The entrance area is not rounded off, so that at
“r - small v~i values the flow surely, breaks down on the out-

s%de. It relates in this instance to hitherto unmentioned
tests on a d~c$ .consigting ofa rectangular S.bee%-metal
frame with 200 X“300 mrna frontal surface, which has th~
same”lenqth as ~LOO%OO (400 ,?m) , and the value. F/F’ =

0.97. The rate of flow was not recorded.

c. The Cwo and c~o * ~a~ues of a thin-walled

duct with round outside exit “area (V66Hlood). The outside

breakdown at small qai as in case ~, has shifted to
the inside of the diffuser at great mai(v<lla~).

D. The Cwo and Cw * values of a duct on which,
o

throuqh correct opening ratios of diffuser and exit, the
%reakdown of flow over the entire ~ai range has been
eliminated - in return for which the friction drag

*
% o - %To of the duct is, of course, so much hi%her.

c) T’he Best Open Areas

These cannot be summarily determi~ed from the quo-
tients Crlo/~ae say, of figure 7, as indication of qual-

ity, since the cooling po;ver is not exactly proportional
to ~ae. 3esides, it would make no allowance for the
weight iilcrease %y decr~asing openinq ratio. The differ-
ent forms are therefore -e~al’uat.edon the ‘oasis 6E%t’ the
ratio of dragging power L to coolinq power Qe’ -Lis
the power required to sustain and propel the installation
in ievel flight. In”this manner, the proportion of wei%ht
and draq “4.s expressed by one di.qit.

The dragginq power,K-, L is approximately

(9)
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G radiator meiqht

s radiator veight per unit of frontal
surface

c gliding. angle of airplane

The coolin$ power Qe itself was not recorded; it can,
horever, be conju;ated,to the different ~ai an d Ta e
by neans of heat-dissipation measurements on coolin% cl-
e~.e~ts, as fOl~OWS :

The coolinq..norer Q of radiator elenents is USUal-
ly nec,sured joint~y rith the conductivity ~ai in the

closed tube (reference 4), fi~ure 20= I’t is

Hence the. coo.lin~ power Qi of a radiator in free flow

‘in the specific case of S = 11 existinq, for instnnce,
To

c~i‘

.7, tv 100H1OO: .

( =te’)~th=ta8 j.,.———.. Instead’ of Qi , it ‘is ‘expedient to con-

sider only the nondine~sional product, t&rned the ‘tcoolin%
power f.actor,]~ ~ai ● ~th, shown in figure 21, plotted

aqainst ~ai at V. = 50 m/s for different cooling SYS-
tems (numbered 3, 5, 6, 8, Lo 6, r.nd ‘7). The %roken curve
passes throu.qh those points Of the indi:~idual curves in
which the radiator depth ~ = 300 m@, is retached. It in-
dicates maxinum -rp.luesreached at yresent with such depths
for To = 50 m/s 3y different conducti~ities ~nd which

are not likely ever to be much hi~her in the future. That
~~i ~th = f (~ai) hr.s a naxirnzn is apparent, for ~th;

i.e., the rat~o of air heating in the radiator to the tem-
perature range in the radiator (am - te) must drop mono-

tonically from 1 at ~ai = O (extreme case, in which in-
finitel~r qre~.t cooling area. is built in) to O at ~~i = 1.

.

. .— II
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Besides,
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‘A’%h’ich , admit te’~l<y’y“is “ho% itidependent o“f‘“V. , . and to .com-

pu%~ &itli’con&t&nt” values of “c ~.n&’ ‘*
‘.3. :1%’roug”hout the

followinq m.e put ,$ = 0.1 and g = 1.5 kg/alma, so that
~ “,ca~”,be,p“J.otte’d aqain~t ~, as’ ~~own’ in” fi~u~e 23 for
fia.i= 0.358. Owing to the relationship ‘existinq ‘oetween
h ag”d ‘To, eac’h speed ‘Vo” really should ‘De ~lot ted s.ep-
arat ely’. ‘But thi;s ‘can be a~oided %y plottinq the summands

%0 of A uprqrd, f,.roma certain point of the oidtnate,. n-
and the speed-related sumnands <g ~ ~oz

z
dotmward. The

.
opening ratios for ‘oest dra~.qinq porer at different” speeds
are o-otained by the contact points of tan%ents of the cor-
respondin~ zero points to’ t-he ordinates. The completed
process gives the best op~ninq ratios in rel,atio~ to con-
ductivity ~ai , as’ indicated in fiqures 24a and 24b, ‘al’on~

nitfi the related ~ae and Cwo values, -d the obtained

ratios A/K. The openinq. ,ratios and ma e ~alues, %y the

degree of accuracy with which they were computed, are ap-
plicable to thin-walled and thi.clc-walled ducts. The shown
‘%0 and A/K values for tl~in-walled ducts are those for

vanishinq veiqbt effect (v. = m). With observance of the
re.maininq results, the representation %ives the following
practical points of viev for the best fit of freely exposed
radie.tors :

1) The entrance areas (fig. 2.4a) may range anywhere
%etween V = 100 percent and V = 7ait* so long as the
increases in speed outside of the diffuser remain small
compared wit> sonic ~elocity; i.e. , at r,edium flying speed.
At hiqher flyinq speeds, the iower permissible limits must
le approached and slender diffuser form chosen. To illus--
trate: For speeds up to 375 n/hr, ah entr&nce area of
around 60 percent and a diffuser sinilar to v~ fj is recom-
mended.

2)
us~ally

~ )

.-
(See ta%le III.)

On the best ducts the e3ci* area (fig. 24%) is
snaller than the conductivity.

The weight factor disre~arded (fig. 24c), a gen-
eral rule for the flow is: ~ae = ~ ~ai.

--—— ______ ______ ____________
*
Herewith the demand for simple control - i.e., that of

air exit - is satisfied. ,.,
,..

.. J
,,

(.’.’ .,.

— —.- ,——, —.,, —,, —
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..-
CW.o = 0.14. :, ..

l’. .. ... ..... .,,.,,,:;. —
.. ‘:.,..,,.,, .,’

“5)~’The ~,~tio A~,R““’(fi%- 24e]. .hec’omes nininum at .

mai = 0..3“to 0.4, “’i.e.’;@Ofi ,the cooling -poi?er factor of
the coolinq s~stern ~e~omes n~xifium.

,’.
..,, .,

IV. DBAGGING’ POWER By BEST ‘OPXNIN~ “.3ATI0’~ITH” - ‘“
,.

,.

ALLOWA3TCII FOR TE31 XFW3CT OF AIR HEATING ‘“

The followin~< iS a comparison wi.tb other radiator in-
stallation desi:ns n.ounted On an’ ,airplane” fusela%e on t’he
basis of the obtained results, in an attenpt to ascertain
what Dart of’ the en.?;ir.e ~o~Ter for t’he cool in% is stressed. .
while using t~he 3est radj.,ltors in free strean. The wei%ht
is disregarded hut not the effect of air hea.tinq, which
consists in a decrease of dr~.~ ~,nd flow. The test data
eml?lo~red for this purpose are Al”V= W(e) - W(O) and AQ =
Q(e) - Q(O) of table VI, ~~.ich ~~ere”o’~tained by install-
ing a 200 mm deep, electrically heated radiator SKF RR
240 in different ducts and which, for the tine bein%,
are applicable only to these or similar systems and to
low flyinq speeds, The valUOS AW and AQ are those for
temperature differences @ = 65° C (water Coolinq). The

*~Q.1 Q(o)ta’ole further contains the ratios * = -
.Q(e)~(~)’ ‘it:

which the -values A/K o%tained so ‘far for wei~ht omissions
must be multiplied in Order to all.ov for t’ti’&air heating

& %2 “%
L= $+2 —-- --”—

., .K.,..’.. .. ~L cpL e,.
..

according to equation
.. . .

r,

The QP .is, expressed ‘OY the heat dissipation required for
the..coolinq of 1 bd”rsenower Of enqine’ p&~6r which, for wa-
ter coolinq, amounts t: around. 320 kcal/h, and for %lycol
cooling, to around 250 kcal/h. Then the division of L
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by the propeller ,efficienc& (assuned at. ‘II= 0. ’7) gives the
draqging power in porti,otis of the ,enqine power.

The conductivity of the radiator 310ck is to, be ~ai =
0.35, vh.ich corresponds to t’he ~ values in ta%lc VI ,
and to the %est conductivity, accordinq to fi~;ure 24. T@e
respecti~e A/l% value ?s equal to 1. T7he entranee area
is assumed as Ve6, the exit area at E23,. according to
fiSure ~4C l’or these data, the values $= 0.91 at 0 =

65° C, and ~ = 0.83 <3te = 114° c, are inter~olated /

from ta%le VI, which finally afford:

L = 5,03 10-6 Voz (hp) for 6 = .~50 p

L = 1.43 10-6 V-02.(hp) for e = 114° c

(To in m/s), plot.tcd in fi%ure 25 in percectaqe of en-

?ine horsepower.

Trar.slation ~jy J.. Vanier,
National Ad-risory C’or.r.ittce
for Aeronautics.-’
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Table I

0,7200,183 0,358 1,00,466
D(JC+

cma

0,166
0,214
0,260
0,295

0,155

:%
0,469

0,156
o#45
0,37’3
0,516

0,4241)
0,253
0,382
0,538

——
q.. c!m*

0,166
(t212
0,253
0,303

0,146
0,234
0,368
0,506

0,147
0,216
0,370
0,537

(),*1)

0,222
0,374
0,530

0,178

m.

0,077
0,036

:!%

0,128
0,224
0,272
0,319

0,136
0,262
0,369
0,458

0,139
0,268
0,366
0,469

cm

0,167
0,213
0,251
0,305

0,139
0,219
0,369
0,600

0,137
0,162
0,289
0,532

0,38&P)
0,170
0,277
0,515

0,144

.—
Clse

0,105
0,112
0,125
0,138
0,182

0,124
0,128
0,146
0,160
0,214

0,125
0,139
0,151
0,169
0,214
0,134
0,14
0,158
0,171
0,227
0,408’)
0,4281)
0,5W)
0,5821)
0,6301)
0,136
0;144
0,163
0,168
0.240

V.. f%,

0,169
0,214
0,253
0,316

0,133
0,209
o,3qo
0,403

0,133
0,138
0,184.
0,328

$;::)

0:142
0,136

0,158

—-
J;,,.

0,184
0,210
0,227
0,223

0,180
0,328
0,433
0,494

0,150
0,373
0,620
0,880

0,170
0,31Y
0,619
1,03:

‘vo

,vi3

v 36

‘V66

.VIOO

v 1O(Y)

HO
H 15
H 34
H 65
H .1.00

HO
H15-
H 34
; :X&f

HO
H 15
H 34
H 65
H 100

: ?5
H 34
H 65
H I(M

Ho
H 15

n
H 100

::5
H 34

:!&

cm, m.

0,072
0,087
o,o&9
0,091

0,106
0,141
0,148
0,158

0,108
0/141
0,159
0,166

0,112
0,146
0,156
0,175

qlv

0,088
0,106
0,110
0,118

0,157
0,276

:%%

0,156
0,320
0,521
0,678

0,150
0,316
0,528
0,725

0
0
0

:

0
0
0
0
0

0
0
0
0
0

r)
o

;
o

0

:

:

0,165
0,207
0,238
0,288

0,174
0,248
0,305
0,373

0,179
0,255
0,315
0,394

0,4731)
0,5261)
0,5781)
0,6511)

0,063
0,069
0,083
0,103

0,128
0,198
0,242
0,285

0,133
0,217
0,285
0,334

0,125
0,224
0,294
0,333

I

I

I(),]go
0,260
‘0,334
0,420

0,176

I
II

I)Ex+ernal flow sepora+ed
S) Exfropo/ote vo[ues for no seporof e d flow
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TABLE II
,. ....,. ,

No.

,.

- —--------

Duct

Comparison of Radiator IIW Sp. R. 180
with Screen v~i = 0.466

’36 H34

t V H6566

“VZOOH34

PE100 65

v100%00

—..——-_— ___

.——--— --— ---
%Vo

radiator.———-— —— —— --

0.235

.3’72

.216

.364

.555

.——___ ______

.---— ——---
CT

0

screen.-——-—— —---

0.234

.370

.222

.374

.590

.—-——— ——— .

20

—- ..-—-—. —-..-y A-—. —.———

m~.i

-+

‘oae

radiator screen
—-.=-.——--— ----- -—

0.22 0.22
I

,39 I
I

.37

i
.26 I .27

!
.38..- 1 .37

.47 I .47

I-——. —-—.——---—L.—..—.————————.

70 Values for ~loo~loo and V66HL00

7
———_—_______________,_____..

Vai
! I I

~——-— —..—

10 0.183

~ II
0.358 !

cowl
0.466

-— ——— ___ ––_________+_________F. ––

~

—-—————— ———————

V Hloo 9 4.05 3.44 2.66 2.26
100 TO (kn/h ) 533

\
570 628 664.

I
V Hloo v I 2.63 ‘ 1.71 1,24 ! 1.0
66 Y. (lrn/11) 630 729 802 [ g4g

-.

.



I TABLE IV. Test Values of Cwo and ~ae for Thin-WalledDucted Radiator

~ae=O 0.205 0.32 0.435 0.685 1’—

7

— I
cowl Cw Cw Cw Cw ~ qae

o ‘ae o ‘ae o nae a Cwo I ~ae ‘W. nae
I

~6H12 0.1142 0 0.1235 0.1015 0.113 0.1065 0.1062 0.109 0.1017 0.1685 0.05’93 !

~6Ha6 .1215 0 .1841~ ,1605 ,1617 ,190 .1369 .2085 .105 ! .242 .0897

V6~H4q ,1322! O .2584 ,1868 .2538 .2535 I ,2208 .3078 .1476

1.1

.391 .0885
VGGHG5 .1592 0 .2896 :1928 .3154 .2925 .3044 .355 .2184 .489 .1278
VG~He~ .15921 0 .33421 .210 .3811 .258 .3823 .396 .33421 .556 .2426
v6~H~oo .205 I O .415 [ .206 .486 .304 ‘ ● .544 .426 .518 .6 .413

—. —

TABLE V. IhcperimentalCwo and ~ae for Thin-WalledDucted Radiator
V6~H2~ with DifferentExit LengthRatio lfD

, 1

%/D Cwo ‘Oae Cw
o

0.70 0.1301 0 0,1929
1.08 .1134 0 .1829
2.03 .1215,0 .1841

I

—.

qae
—.—
0.151
.154
.1605

——

—————i———t—— ‘-–—

0.1696 0.203 0.1545 0.197 ‘0.1301
.1441 .1995 .1227

::z~ :fi5 .1369 .2085 .105 wVae Cw
o q~e

.——
0.2373 0.1162
.236 .1039 ‘
.242 .0897

1,.——...__

I

E’
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- ——---,

_— ______

cowl

. -— ——____

v 116536

‘3’6 ‘1OO

v66 ’15

v ~= H34

v65 H;@5

v66 Hloo

T=OOH 100
—— —_______

——.——..—. .—-—-— — -.

--— —.-.. -

AT———-
W(o)————__ ,_-

-0.11

-.08

*.15

-.13

-.12

-.09

-.08
______...

6=65°c

AQ—— _-
,Q(0)

——-— —.—

-0.04

-.97

-.05

-.07

-.0’7

-.06

-.04
.——.—_..-.——

.———---

Q
--.-———.
0.93

.95

.89

.94

.95

.97

.96
-...—————

22

---- ———-

AV--—
w(o).-—-—----

-0.19

-.14

-.26

-.23

-.21

-.16

-.i~

-——..-—-.—

-—-————

-———-——,

-0.07

-.12

-.09

-.11

-.12

-.10

~.!37”’
-————-—.

.———---

w
-—.-——-
0.8’7

.98

.81

.85

.90

.93

.93
-——————.

.-
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Figure16.- Thinwalled ducted
radiator

different exit opening ratioe
and different exit lengths.
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Fimre 18.. Drag coefficient for .

?igs. 18,19, 20,21,22

Figure 19.- Drag coefficient of
typical duct designs

against qai.

IPimre 20.. Radiator block in
tube (te and ta=air

temperature.)

V66E d26 at differentL/D

.,, ..,. _,, .,. ..

Figure 22.- Curves of maximum l?igure21... Cooling power coefficients
cooling power of different cooling

coefficient for cooler of 300mm systemsagain8t ~ei at v. SW*.
depth, ●t different Vo.
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Figure 23.- Dragging power coeff~cient

A against cooling power Figure 24(a to e),,-Ratios ofopen ‘
coefficient at qai 0.356 .

(a and b),flow coeff&%~, (c),
- dr~ coefficient,(d),mdA/~(e),
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